An Experimental Study on Content Based Image Retrieval Based On Number of Clusters Using Hierarchical Clustering Algorithm
نویسنده
چکیده
Nowadays the content based image retrieval (CBIR) is becoming a source of exact and fast retrieval. CBIR presents challenges in indexing, accessing of image data and how end systems are evaluated. Data clustering is an unsupervised method for extraction hidden pattern from huge data sets. Many clustering and segmentation algorithms both suffer from the limitation of the number of clusters specified by a human user. It is often impractical to expect a human with sufficient domain knowledge to be available to select the number of clusters (NC) to return. This paper discusses the image retrieval based on NC which is evaluated using hierarchical agglomerative clustering algorithm (HAC). In this paper, we determine the optimal number of clusters using HAC applied on RGB images and validate them using some validity indices. Based on number of clusters, we retrieve set of images. These cluster values can be further used for divide and conquer technology and indexing for large image dataset. An experimental study is presented on real data sets. Key terms: CBIR, number of clusters, hierarchical agglomerative clustering, validity indices, RGB image
منابع مشابه
A Novel Method for Content Base Image Retrieval Using Combination of Local and Global Features
Content-based image retrieval (CBIR) has been an active research topic in the last decade. In this paper we proposed an image retrieval method using global and local features. Firstly, for local features extraction, SURF algorithm produces a set of interest points for each image and a set of 64-dimensional descriptors for each interest points and then to use Bag of Visual Words model, a cluster...
متن کاملA Novel Method for Content Base Image Retrieval Using Combination of Local and Global Features
Content-based image retrieval (CBIR) has been an active research topic in the last decade. In this paper we proposed an image retrieval method using global and local features. Firstly, for local features extraction, SURF algorithm produces a set of interest points for each image and a set of 64-dimensional descriptors for each interest points and then to use Bag of Visual Words model, a cluster...
متن کاملروش نوین خوشهبندی ترکیبی با استفاده از سیستم ایمنی مصنوعی و سلسله مراتبی
Artificial immune system (AIS) is one of the most meta-heuristic algorithms to solve complex problems. With a large number of data, creating a rapid decision and stable results are the most challenging tasks due to the rapid variation in real world. Clustering technique is a possible solution for overcoming these problems. The goal of clustering analysis is to group similar objects. AIS algor...
متن کاملSemiautomatic Image Retrieval Using the High Level Semantic Labels
Content-based image retrieval and text-based image retrieval are two fundamental approaches in the field of image retrieval. The challenges related to each of these approaches, guide the researchers to use combining approaches and semi-automatic retrieval using the user interaction in the retrieval cycle. Hence, in this paper, an image retrieval system is introduced that provided two kind of qu...
متن کاملImage retrieval using the combination of text-based and content-based algorithms
Image retrieval is an important research field which has received great attention in the last decades. In this paper, we present an approach for the image retrieval based on the combination of text-based and content-based features. For text-based features, keywords and for content-based features, color and texture features have been used. Query in this system contains some keywords and an input...
متن کامل